A Cascaded Linear Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging
نویسندگان
چکیده
We propose a cascaded linear model for joint Chinese word segmentation and partof-speech tagging. With a character-based perceptron as the core, combined with realvalued features such as language models, the cascaded model is able to efficiently utilize knowledge sources that are inconvenient to incorporate into the perceptron directly. Experiments show that the cascaded model achieves improved accuracies on both segmentation only and joint segmentation and part-of-speech tagging. On the Penn Chinese Treebank 5.0, we obtain an error reduction of 18.5% on segmentation and 12% on joint segmentation and part-of-speech tagging over the perceptron-only baseline.
منابع مشابه
An improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملUsing Part-of-Speech Reranking to Improve Chinese Word Segmentation
Chinese word segmentation and Part-ofSpeech (POS) tagging have been commonly considered as two separated tasks. In this paper, we present a system that performs Chinese word segmentation and POS tagging simultaneously. We train a segmenter and a tagger model separately based on linear-chain Conditional Random Fields (CRF), using lexical, morphological and semantic features. We propose an approx...
متن کاملCharacter-Level Dependency Model for Joint Word Segmentation, POS Tagging, and Dependency Parsing in Chinese
Recent work on joint word segmentation, POS (Part Of Speech) tagging, and dependency parsing in Chinese has two key problems: the first is that word segmentation based on character and dependency parsing based on word were not combined well in the transition-based framework, and the second is that the joint model suffers from the insufficiency of annotated corpus. In order to resolve the first ...
متن کاملA Lattice-based Framework for Joint Chinese Word Segmentation, POS Tagging and Parsing
For the cascaded task of Chinese word segmentation, POS tagging and parsing, the pipeline approach suffers from error propagation while the joint learning approach suffers from inefficient decoding due to the large combined search space. In this paper, we present a novel lattice-based framework in which a Chinese sentence is first segmented into a word lattice, and then a lattice-based POS tagg...
متن کاملGraph-based Semi-Supervised Model for Joint Chinese Word Segmentation and Part-of-Speech Tagging
This paper introduces a graph-based semisupervised joint model of Chinese word segmentation and part-of-speech tagging. The proposed approach is based on a graph-based label propagation technique. One constructs a nearest-neighbor similarity graph over all trigrams of labeled and unlabeled data for propagating syntactic information, i.e., label distributions. The derived label distributions are...
متن کامل